Cancellation of laser phase fluctuations in Stokes and anti - Stokes generation
نویسنده
چکیده
In the coherent anti-Stokes Raman scattering process, the spectrum of the generated optical phonon depends on the degree of temporal correlation between the pump laser field and the Stokes field. When the two fields are strongly correlated, such as when the Stokes field is generated with stimulated Raman scattering (SRS), the spectral shape of the optical phonon is found experimentally and theoretically to be the same as the gain-narrowed Raman line shape because the laser phase fluctuations cancel out totally, leaving only the collisional noise in the SRS process. When the two fields are uncorrelated, the shape of the optical-phonon spectrum is found to be the same as the Raman line shape without gain narrowing. When two fields are partially correlated, then the two spectral components appear together. We provide a method to measure the degree of correlation between two optical fields that have different central frequencies. The theory developed to interpret the experimental results is an extension of the quantum theory of SRS to include anti-Stokes scattering. We show that only in the high-gain limit can the quantum fluctuations be thought of as arising from a classical noise process.
منابع مشابه
Dispersion and Deposition of Micro Particles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase model
Dispersion and deposition of aerosol particles over two square cylinders confined in a channel in laminar unsteady vortical flow were investigated numerically. Lattice Boltzmann method was used to calculate fluid characteristics and modify Euler method was employed as Lagrangian particle tracing procedure to obtain particle trajectories. Drag, Saffman lift, gravity, buoyancy and Brownian motion...
متن کاملAll-solid-state parametric Raman anti-Stokes laser at 508 nm.
We report a parametric anti-Stokes Raman laser using potassium gadolinium tungstate, generating output chiefly at the first anti-Stokes at 508 nm. The compact 4.5 cm long device is pumped by a Q-switched 532 nm laser and uses an off-axis Stokes resonator to provide non-collinear phase matching between the pump and the generated Stokes and anti-Stokes fields. Anti-Stokes output energies up 0.27 ...
متن کاملInvestigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers
In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...
متن کاملRevealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.
We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substra...
متن کاملAnti-stokes Raman Lasers : a Concept for the Generation of Short-wavelength Coherent Radiation
The anti-Stokes Raman process allows frequency up-conversion of coherent pulsed or cw radiation. For the process, a population inversion on a two-photon transition is needed. The principle of this technique, the present experimental situation and some developments will be described and discussed. Introduction The generation of coherent radiation at short wavelengths, in the vacuum-ultraviolet (...
متن کامل